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Abstract 

 
In 2014 and 2015, the U.S. Geological Survey (USGS), conducted frequency-domain 

electromagnetic (FDEM) surveys at the USGS Amargosa Desert Research Site (ADRS), approximately 
17 kilometers (km) south of Beatty, Nevada. The FDEM surveys were conducted within and adjacent to 
a closed low-level radioactive waste disposal site located at the ADRS. FDEM surveys were conducted 
on a grid of north-south and east-west profiles to assess the locations and boundaries of historically 
recorded waste-disposal trenches. In 2015, the USGS conducted time-domain (TDEM) soundings along 
a profile adjacent to the disposal site (landfill) in cooperation with the U.S. Environmental Protection 
Agency (USEPA), to assess the thickness and characteristics of the underlying deep unsaturated zone, 
and the hydrostratigraphy of the underlying saturated zone. 

FDEM survey results indicate the general location and extent of the waste-disposal trenches and 
reveal potential differences in material properties and the type and concentration of waste in several 
areas of the landfill. The TDEM surveys provide information on the underlying hydrostratigraphy and 
characteristics of the unsaturated zone that inform the site conceptual model and support an improved 
understanding of the hydrostratigraphic framework. Additional work is needed to interpret the TDEM 
results in the context of the local and regional structural geology. 

 
Introduction 

 
Electromagnetic (EM) methods including frequency-domain electromagnetic (FDEM) 

conductivity surveys permit rapid, non-invasive mapping of the electrical conductivity of shallow earth 
materials, with particular sensitivity to electrically conductive soils, fluids, metals, and materials with 
high magnetic susceptibility (e.g. Brosten et al., 2011). FDEM methods are commonly used to map the 
location and extent of buried waste and to delineate groundwater leachate plumes emanating from 
landfills and other waste management facilities (e.g., Kachanoski et al., 1988; Sheets and Hendrickx, 
1995; Reedy and Scanlon, 2003; Hezarjaribi and Sourell, 2007). Time-domain electromagnetic (TDEM) 
systems are useful for mapping deep subsurface electrical conductivity structure and lateral changes in 
hydrostratigraphy (e.g., Fitterman and Stewart, 1986). Used together, FDEM and TDEM surveys around 
waste management facilities provide complementary multi-scale information on the distribution of 
subsurface electrical conductivity that can reveal the distribution of buried waste and delineate 
hydrostratigraphic controls important for understanding contaminant fate and transport.   

Research at the U.S. Geological Survey (USGS) Toxic Substances Hydrology Program 
Amargosa Desert Research Site (ADRS) focuses on the fate and transport of contaminants in arid 
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environments. In support of this research, FDEM surveys were conducted to delineate the general 
location and extent of buried waste-trenches and map near-surface hydrogeologic structure within a 
closed low-level radioactive waste (LLRW) disposal site. TDEM methods were used to map the larger-
scale hydrostratigraphy underlying the site. 

 
Purpose and Scope 

 
The purpose of this paper is to document mapping of subsurface electrical conductivity 

distributions at selected areas of the ADRS and adjacent LLRW facility. Although the location of the 
waste disposal trenches is generally known, historical construction activities may have displaced the 
trench boundary monuments. EM methods provide a non-invasive means of delineating trench 
boundaries to assess locations and geometry. Acquisition, processing, and interpretation of FDEM and 
TDEM surveys are described. FDEM and TDEM survey results are compared to available borehole data 
and waste-trench construction plans to inform the site conceptual model with an infrastructure map, and 
support an improved understanding of the hydrostratigraphic framework. 

 
Site Description 

 
ADRS is a field laboratory approximately 20 km east of Death Valley, California, 17 km south 

of Beatty, Nevada, and 170 km northwest of Las Vegas, Nevada (Figure 1). ADRS is located within a 
northwest-trending valley formed by normal faulting along the front of nearby mountain ranges. The site 
is underlain by a 175-meter (m)-thick unit of unconsolidated alluvial-fan, fluvial, and marsh deposits 
consisting of several sand and gravel sequences (Andraski, 1996). Depth to the water table is 85 to 115 
m below land surface (BLS) (Fischer, 1992). ADRS serves as a field laboratory for the study of arid-
land processes and associated hydrologic conditions within and adjacent to a LLRW site, including 
study of the fate and transport of contaminants through the unsaturated zone on a 160,000-km2 area 
adjacent to a hazardous waste-burial facility. Since 1962, approximately 119,000 m3 of LLRW has been 
buried in shallow trenches at the facility (Andraski, 1996). The trenches range from 1- to about 90-m 
wide, 90- to 250-m long, and 2- to 15-m deep (Mayers, 2003). Waste buried in the trenches was stacked 
in layers to a height of approximately 3 m and covered with about 0.5 m of native alluvium previously 
removed from the trenches (Andraski, 1996).  

Methods 
 

Electrical conductivity of earth materials is affected by various factors including mineralogy, 
porosity, water saturation, fluid salinity, temperature, and cementation. FDEM instruments measure 
subsurface apparent electrical conductivity utilizing time-varying EM fields (in the kilohertz range) to 
induce subsurface eddy currents (Ward and Hohmann, 1988). This non-invasive approach enables the 
rapid mapping of conductive subsurface structures and has been widely used in groundwater studies 
(Johnson et al., 2002; Ong et al., 2010). FDEM instruments, simultaneously transmit and receive signals 
at one or more frequencies in a ‘continuous’ transmission mode. The FDEM instrument used at ADRS 
has a depth of investigation (DOI) in the range of 10 m. In contrast to FDEM methods, TDEM systems 
utilize an ‘on-off’ transmission mode whereby a transient current passed through a large transmitting 
coil is used to induce subsurface eddy currents. The decay-rate of secondary magnetic fields induced by 
the eddy currents penetrating into the subsurface is measured by a small receiver coil and inverted to 
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